
r f A PROPOSED CLASSIFICATION SCHEME FOR ADA-BASED SOFTWllRE PRODUCTS

Gary J. Cernosek
McDonnell Douglas Astronautics Co.

16055 Space Center Blvd.
Houston, Texas 77062

(713) 280-1500

- Houston

1.0 UTROUCTIU

As the requirements for producing software i tho Ada* lan iage
become a reality for projects stach as the Space Station, a great
mount of Ada-based program code will begin to emerge. Although
this software will exist in Ada source code form, it will display
varying degrees of quality based on the manner in which it was
developed. In spite of the fact that Ada supports the most
modern and effective concepts of programming available, poorly
written programs can be created in Ada just as they have been in
previous languages.

Consequeatly, the term "written in Ada" could have many
connotations. The mere fact that a program exists in Ada source
code form does net imply to any degree that there is any more
quality in that product than would be if it were written in
FORTRAN or C. If the modern features of the Ada language are nnt
utilized to support the principles of software engineering, then
the entire motivation and justification for moving to the Ada
language will be defeated.

Recognizing this potential f0.r varying levels of quality to
result in Ada programs, what is needed is a classification scheme
that describes the quality of t i software product whose source
-ode exists in Ada form. This classification assessment would be
bassd on the overall process in which the software was developed,
as well as the characteristics and attributes associated with t21e
resulting source :ode produced. This provides an "after the
fact" evaluation, and thus will not directly support proper
development. However, the knowledge of the classification sc 'ht 'n i t '
may help in deterring bad development approaches and indirectly
increase the overall quality consciousness of Ada-based software.
development.

This paper proposes a 5-level classification scheme that atten1;St:
to decompose this potentially broad spectrum of quality of whi\.!.
Ada programs may possess. The numbcr of classes and their
corresponding names are not as important as the mere facT; t h a t
there needs to be some set of criteria from which to evaluate
programs existing in Ada. An exact criteria for each class i : >
nc?, presented in the paper, nor are any detailed suggestion? I.j!

_Low t,o effectively implement this quality assessment. The p a p c . : .
is merely intended to introduce the idea of Ada-based soft,w,ir-c-
classification and to suggest a set of requirements from which L,.,
bass further research and development.

* Ada is a trademark of the U. S. Government (AJPO)

B.4 .7 .1 .

2.0

The purpose of the Ada language can be viewed from two
perspectives. Technically, Ada was designed to strongly support
the goals and principles of software engineering. However, the
main influence driving the definition of Ada was economical. The
"software crisis" was recognized in the early 1970's and the
major cost factors were identified in software maintenance
activities. Therefore, Ada was designed to give the potential
for reducing software costa, Cost reductions start by providing
a common language that consequently requires less compiler
development and less programmer re-training. And as the amount
of Ada code developed increases, the re-use of verified software
components can further decrease development expenses.

Since the discipline of software engineering focuses on both
technical and economic issues, the Ada language must be used as a
software engineering tool and not merely as another programming
language. Ada will not automatically meet its purpose and goals
- it has to be used as it was designed to be used.

Therefore, it is unrealistic to expect that all software projects
developed in Ada will realize the many benefits that the language
has to offer. This is true not because the language is
deficient, but rather because there are many different approaches
to using any language. Several reasons why Ada may n o t be
properly used on initial projects are outlined below:

Technical - The education and training required to learn
how to effectively use Ada may be significant,
especially for individuals ..rithout previous exposure to
higher-level languages. Ada quality may suffer by
having improperly trained personnel pre-maturely work on
Ada development efforts.

Economical, - The initial costs involved in moving to any
new language are high. This characteristic may drive
decision makers to short-term solutions, such as code
translation approaches.

Political - Many organizations feel they are "locked"
into a particular programming language, and often the
machines that run their software. Even when Ada is
shown to be technically superior and actually cost-
effective, political influences can stifle attempts to
upgrade an outdated software development environment.

Inertia 1 - It is only natural for organizations to be
reluctant to change. Ada, as well as other advances in
computer engineering such as distributed processing, may
intimidate people who feel more comfortable with their
prc-sent . environment. This natural state of inertia
:,hould be accepted and effectively dealt with rather
t .han be a front line for personal hattles. e

B.4.7.2.

With these issues and many more to contend with, it is obvious
that most organizations will have to transition into an Ada
environment. As this transition is taking place (and possibly
thereafter), a varying degree of quality must be expected to
result among different development efforts. One way to measure
the progress of transition is to classify the quality of the Ada
software resulting from these efforts. The goal must be set to
produce only the highest level of quality in Ada software.
However, the reality must be recognized that it will be difficult,
to meet this goal in initial projects.

The suggested approach is to get started with Ada and do the best
job possible under whatever circumstances may exist. The
previously described road blocks should not prevent the
exploration of Ada. However, the learning curve must be steep
and be based on good sources of Ada training and education. Plr~c~r.
development habits must be broken and good ones must be created
and enhanced. And most importantly, engineers and managers h a v e
to encourage the training and use of Ada. Without both peer-
level and management support, effective transition to Ada will tx-
difficult.

The most important theme to understand and constantly keep in
mind is that the basis for "good" and "bad" rest. in the goals a r i d
principles of software engineering. Software engineering
represents the stable point of professional programming that C3r.i

separate quality standards from personal style and allows
concentration on issues above the language level.

Therefore, in order to measure the progress of transitioning t1.b

Ada, a software engineering-based classification method is
needed. This is also in accordance with the DOD-STD-2167
Software Documentation Standard, which has changed the emphasis
on Quality Assurance to Quality -ation .
classification scheme for evaluating Ada software quality is
presented in the next section.

A proposed

OCYOINAL PAGE ts
OF RXM QUALITY

0.4.7.3.

3.0 W s I F I W O N m H O D AND C-

Each of the classifications below are described with the
following format:

0 Classification level number: 5 (lowest) to 1 (highei-t)

0 Development Process Statement - phrase that references
tho approach taken in development:

00 Level 5 - "Translated To Ada"
00 Level 4 - "Coded In Ada"
00 Level 3 - "Programmed In Ada"
00 Level 2 - "Designed Into Ada"
00 Level 1 - "Engineered With Ada"

0 Description of the process in which the program source code
was created

0 Characteristics and attributes indicative of the
particular level of quality

Level 5 - "Translated T o Ada"
This lowest class of Ada software implies nothing more than the
fact that the program code exists in Ada form. The Ada code is
created by some type of code translation, either through a manual
and direct mapping performed by a human coding specialist, or by
an automated code translator. Level 5 classification is intended
for programs that have been previously developed in another
language and have been converted to Ada merely to meet a
requirement for the software to exist in Ada. However, programs
that have been properly re-structured or re-designed into Ada
have potential for a higher quality assessment.

The characteristics of Level 5 software include significant
maintenance problems due to lack of readable and understandable
code. None of the aesthetic qualities of the Ada language are
evident due to the absence of human engineering. Additionally,
the overall program structure i5 characteristic of the original
language's form and represents the most inappropriate and
ineffective use of the Ada language. A possible exception to
this evaluation is when an organization wants to escape the
previous language environment and allow 100% of its future
development and maintenance in Ada.

Level 4 - "Coded In Ada"

Although Level 4 programs arc humanly written in Ada, they lack
t h e basic quality characteristics possible in good Ada programs.
The development process is generally based on program development,
personnel that are not properly trained in utilizing the Ada
langzage and its support environment properly and effectively.

8 . 4 . 7 . 4 .

The approach to development is ad hoc with no basis on formal
software requirements definition and no documented design
Process. Level 4 developers incorporate coding semantics of
other languages into their Ada programs that are inappropriate to
Ada.

e

I .

Corresponding characteristics include abbreviated identifiers,
unstructured control features, and lack of effective problem
modeling and abstraction dt1.e to the absence of appropriate data
structures. Overall program design lacks modularity, utilizes
excessive amounts of global data structures, and fails to control
visibility of objects with the information hiding techniques of
package structuring. The characteristics of Level 4 software
defeat the purpose of requiring the Ada programming language for
program development. A possible exception here is to allow
developers to get started with Ada for hands-on training.
However, in this case, developers must learn proper Ada structure
very quickly.

Level 3 - ronrammed In Ada"

Level 3 represents the lowest acceptable criteria for justifying
the existence of software in Ada form. The developers are
properly trained in the basic principles of the language and know
how to effectively utilize its features for developing readable
and maintainable software. The software requirements are known
and understood with a significant amount of pre-implementation
thought going into the design of the program structure.

Level 3 programs have meaningful identifier names, use only
structured programming constructs, and accurately model real-
world objects with appropriate data structures. Program
structure is highly modularized with inter-module coupling
minimized and internal module structure strongly cohesive.
Packages are properly used to support principles of information
hiding, object encapsulation, and abstract data types.
Visibility of objects is strongly controlled, data is strc.ngly
typed, and use of global objects is strictly limited.

Level 2 - DesAgned In to Ada"

This level of quality concentrates on issues above the
programming language level. A software design approach is
adopted to properly define the structure of the modules of the
software system independently of the implementation details of
the target programming language. One or more design
methodologies may be used to create consistency and reliahilit,y
in the program structure. Since Ada directly supports the
principles of good software design, an Ada-based Program Design
Language (PDL) is very appropriate. However, the main idea is
that the software system is specified and verified to a large
degree prior to the implementaton phase, at which point problenls
a n d errors are much more costly to correct.

8 .4 .7 .5 .

The main characteristic of Level 2 software is that the overall
software system design displays a very understandable structure
that allows reliable modifications and enhancements. Software
design documents are produced as deliverable products prior to
Program source code development.
supported by automated tools that help verify interface
consistency and requirements completeness. The actual source
code programs resulting from the software design display all of
the quality attributes associated with Level 3 software.
Consequently, Level 2 software is more reliable, understandable,
and more easily adapted to new applications.

e
The design methodologies may be

bevel 1 - n w e r e d With A d c

This classification corresponds to the highest degree of quality
possible in Ada-based software. The software is created with a
comprehensive software life-cycle approach by developers who are
well trained and knowledgeable in the goals and principles of
software engineering. The main emphasis in the process is in the
distinction between the problem domain and the solution domain of
the computer-based solution. The requirements analysis phase of
development is utilized to fully understand the problem space and
to determine exactly wha2 the software is to do in the first
place. A variety of methodologies and technologies may be used
to ensure that valid requirements are specified up front and that
the associated costs and risks are reduced. The analysis phase
may include utilization of techniques such as rapid prototying
and higher-level applications generators for defining and
refining user interface and system requirements, and for
generating feedback from the user community. The remaining
phases of design, implementation, testing, and debugging are all
in the solution space of the development process and are
concerned with how to meet the requirements specification.
Software that is engineered with Ada strongly supports the goals
and principles of software engineering. Analysis is the main key
to understanding which components of the software design actually
n e e d to be developed from scratch and which ones can be satisfied
by existing reusable components. A very coherent and useable set;
of documentation is produced in the engineering process relating
to the various phases of the life cycle, a s well a5 documentation
applicable to all phases of development. The concept of a
project data or object base is realized and implemented for
accurate control and accountability of personnel, products, and
organizational information. Automated support tools are
effectively utilized throughout all forms of development to
increase productivity, support proper and disciplined
development, and to reduce the manual effort required from
software developers. And finally, an intense concern for
maintainability is prevalent throughout all decision-making and
phases of development.

8.4.7.6.

It is difficult to assess the quality of Ada code that is
automatically generated from a higher level of specification.

quality rests in the question of what level of specification will
the software be maintained at. If it is strictly at the higher
level of requirements or design specification, then the actual
source code generated will not be visible to the human progammer,
and thus its structure will not be of great significance.

human analysis and subsequent modification, then the level of
quality will be directly related to the same factors associated
with well-engineered and manually-written Ada programs.

Therefore, in this latter case, the attractive process of
generating Ada source code from a higher level of specification
must be designed such that the corresponding characteristics and
attributes associated with the resulting code coincide with those
indicative of well-written Ada software developed directly by a
hurr.9 programmer. The degree of quality associated with the
hia.er-level specification will consequently be based on the
degree to which the automatically generated code displays the

However, if the resulting Ada code will be subject in any way to

good human engineering principles needed for understandable and
maintainable software.

0

0 .4 .7 .7 .

e 5 . 0

The usefulness of tho preceding classification scheme for Ada-
based software is highly dependent on a more precise and tangible
definition of criteria for each class. Although this level of
detail was not given, the taxonomy proposes a starting point from
which to base futher analysis. The main idea of the paper is to
create an awareness of the potential problems to expect When
transitioning to a new programming language such as Ada. The Ada
language alone cannot solve the problems currently prevalent in
large organizations such as NASA in which software costs are a
significant portion of the budget. Ada, and its corresponding
support environment, merely provide the best available set of
tools which support and encourage the adherence to the provcn and
solid principles of software engineering.

The mandate for the Space Station Program to move into the "Ada
culture" will be totally ineffective if engineering principles
and corresponding methodologies are not properly utilized.
Obviously, education and training will be essentia!. for
developing a smooth transition into the software engineering
discipline. The spectrum of potential Ada software quality
classes presented here can help create and maintain the awareness
and importance of viewing software engineering as a true
engineering discipline. This recognition will be essential for
the success of the up-coming proliferation of Ada-based software
projects in the Space Station Program. 0

0 .4 .7 .8 .

